Вариант № 47809

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 1
i

Если число а рас­по­ло­же­но на ко­ор­ди­нат­ной пря­мой левее числа b, то за­ви­си­мость между чис­ла­ми а и b можно за­пи­сать в виде не­ра­вен­ства:



2
Задание № 1761
i

Среди дро­бей  дробь: чис­ли­тель: 13, зна­ме­на­тель: 7 конец дроби ;  дробь: чис­ли­тель: 15, зна­ме­на­тель: 7 конец дроби ;  дробь: чис­ли­тель: 30, зна­ме­на­тель: 7 конец дроби ;  дробь: чис­ли­тель: 27, зна­ме­на­тель: 7 конец дроби ;  дробь: чис­ли­тель: 18, зна­ме­на­тель: 7 конец дроби ука­жи­те ту, ко­то­рая равна дроби  целая часть: 4, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 7 .



3
Задание № 213
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на фор­му­лой n-го члена an  =  5n − 2. Най­ди­те раз­ность этой про­грес­сии.



4
Задание № 1877
i

Даны пары зна­че­ний пе­ре­мен­ных x и y:  левая круг­лая скоб­ка 1; ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ;  левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та ; ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ;  левая круг­лая скоб­ка 3; ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ;  левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та ;1 пра­вая круг­лая скоб­ка ;  левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та ; 6 пра­вая круг­лая скоб­ка . Ука­жи­те пару, ко­то­рая НЕ яв­ля­ет­ся ре­ше­ни­ем урав­не­ния x в квад­ра­те плюс y в квад­ра­те =12.



5
Задание № 1656
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны точки В(−2), А(6), X(а). Най­ди­те длину от­рез­ка ВХ, если точки В и X сим­мет­рич­ны от­но­си­тель­но точки А.



6
Задание № 1765
i

В ма­га­зин по­сту­пи­ло 43 ко­роб­ки с мас­лом по 110 пачек масла в каж­дой. Какое наи­мень­шее ко­ли­че­ство пачек масла не­об­хо­ди­мо про­да­вать еже­днев­но, чтобы масло было рас­про­да­но не более чем за 60 дней?



7
Задание № 247
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.



8
Задание № 1131
i

По­сле­до­ва­тель­ность за­да­на фор­му­лой n-го члена a_n=220 минус левая круг­лая скоб­ка n минус 3 пра­вая круг­лая скоб­ка в квад­ра­те . Вы­чис­ли­те a_123 минус a_118.



9
Задание № 1306
i

От при­ста­ни од­но­вре­мен­но от­прав­ля­ют­ся по те­че­нию реки катер(I) и про­тив те­че­ния реки мо­тор­ная лодка (II). На ри­сун­ке при­ве­де­ны гра­фи­ки их дви­же­ния. Опре­де­ли­те ско­рость те­че­ния реки (в км/ч), если катер и мо­тор­ная лодка имеют оди­на­ко­вые соб­ствен­ные ско­ро­сти.



10
Задание № 1948
i

Най­ди­те наи­боль­шее на­ту­раль­ное дву­знач­ное число, ко­то­рое при де­ле­нии на 11 дает в остат­ке 7.



11
Задание № 1949
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  синус левая круг­лая скоб­ка 11 Пи минус альфа пра­вая круг­лая скоб­ка равен:



12
Задание № 1597
i

Вне­си­те мно­жи­тель под знак корня в вы­ра­же­нии  минус x умно­жить на ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x в квад­ра­те конец ар­гу­мен­та .



13
Задание № 253
i

Со­кра­ти­те дробь  дробь: чис­ли­тель: x в квад­ра­те минус 9, зна­ме­на­тель: 8x в квад­ра­те минус 23x минус 3 конец дроби .



14
Задание № 1137
i

На сто­ро­нах квад­ра­та пло­ща­дью 25 от­ме­ти­ли от­рез­ки дли­ной x. Со­ставь­те вы­ра­же­ние для опре­де­ле­ния пло­ща­ди за­штри­хо­ван­ной фи­гу­ры.



15

Ука­жи­те но­ме­ра пар не­ра­венств, ко­то­рые яв­ля­ют­ся рав­но­силь­ны­ми.

1) (x − 14)2 < 0 и x − x2 − 14 ≥ 0;

2) x2 − 169 > 0 и |x| < 13;

3) x2 + x − 30 < 0 и (x − 5)(x + 6) < 0;

4) x2 ≥ 31 и x боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 31 конец ар­гу­мен­та ;

5) 5x2 < 9x и 5x < 9.



16
Задание № 1139
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.



17
Задание № 1890
i

Тан­генс угла на­кло­на к оси абс­цисс ка­са­тель­ной, про­ве­ден­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в квад­ра­те плюс 41x плюс 8 в точке с абс­цис­сой x0, равен −7. Най­ди­те зна­че­ние x0.



18

В пра­виль­ной тре­уголь­ной пи­ра­ми­де про­ве­де­но се­че­ние плос­ко­стью, про­хо­дя­щей через бо­ко­вое ребро и апо­фе­му про­ти­во­ле­жа­щей этому ребру бо­ко­вой грани. Дву­гран­ный угол при ребре ос­но­ва­ния пи­ра­ми­ды равен 45°, а ра­ди­ус окруж­но­сти, опи­сан­ной около се­че­ния, равен 4 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та . Най­ди­те объем пи­ра­ми­ды.



19

Для на­ча­ла каж­до­го из пред­ло­же­ний под­бе­ри­те его окон­ча­ние 1-5 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло

A)  Зна­че­ние вы­ра­же­ния 2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка :2 в сте­пе­ни 0 равно:

Б)  Зна­че­ние вы­ра­же­ния  минус 2 в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на 8 равно:

В)  Зна­че­ние вы­ра­же­ния 20 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка в сте­пе­ни 4 равно:

Окон­ча­ние

1)  256

2)  −256

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

4)   дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

5)  32

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

20
Задание № 1605
i

Вы­бе­ри­те три вер­ных утвер­жде­ния, если из­вест­но, что  синус альфа = синус 23 гра­ду­сов и  ко­си­нус альфа = минус ко­си­нус 23 гра­ду­сов.

 

1)   синус левая круг­лая скоб­ка альфа плюс 23 гра­ду­сов пра­вая круг­лая скоб­ка =0

2)   тан­генс альфа боль­ше 0

3)  \ctg альфа мень­ше 0

4)   альфа   — угол пер­вой чет­вер­ти

5)   синус в квад­ра­те альфа плюс ко­си­нус в квад­ра­те 23 гра­ду­сов=1

6)   альфа = минус 23 гра­ду­сов

 

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 234.


Ответ:

21
Задание № 1959
i

Вы­бе­ри­те три вер­ных утвер­жде­ния, если из­вест­но, что точка А лежит в плос­ко­сти α, ко­то­рая па­рал­лель­на плос­ко­сти β (см. рис.).

1.  Пря­мая, про­хо­дя­щая через точку А и пе­ре­се­ка­ю­щая плос­кость α, пе­ре­се­ка­ет плос­кость β.

2.  Через точку А про­хо­дит един­ствен­ная Плос­кость, пе­ре­се­ка­ю­щая плос­ко­сти α и β.

3.  Су­ще­ству­ет един­ствен­ная пря­мая, про­хо­дя­щая через точку А и па­рал­лель­ная плос­ко­сти β.

4.  Любая пря­мая, ле­жа­щая в плос­ко­сти β, па­рал­лель­на плос­ко­сти α.

5.  Если плос­ко­сти α и β пе­ре­се­че­ны тре­тьей плос­ко­стью, то пря­мые их пе­ре­се­че­ния па­рал­лель­ны между собой.

6.  Су­ще­ству­ет един­ствен­ная пря­мая, про­хо­дя­щая через точку А и пе­ре­се­ка­ю­щая плос­кость β.

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.


Ответ:

22

Пол на кухне на­ча­ли вы­кла­ды­вать квад­рат­ной плит­кой так, как по­ка­за­но на ри­сун­ке. Раз­ме­ры плит­ки 30 см × 30 см. Раз­ме­ры кухни ука­за­ны на ри­сун­ке в мет­рах. Какое наи­мень­шее ко­ли­че­ство пли­ток может по­на­до­бить­ся, чтобы вы­ло­жить весь пол? Тол­щи­ной шва пре­не­бречь.


Ответ:

23
Задание № 1676
i

Най­ди­те (в гра­ду­сах) наи­мень­ший ко­рень урав­не­ния 4 минус 18 синус дробь: чис­ли­тель: 5x, зна­ме­на­тель: 4 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 5x, зна­ме­на­тель: 4 конец дроби = ко­си­нус дробь: чис­ли­тель: 8 Пи , зна­ме­на­тель: 3 конец дроби на про­ме­жут­ке (−180°; 0°).


Ответ:

24
Задание № 1677
i

ABCD  — пря­мо­уголь­ник. Точка N  — се­ре­ди­на сто­ро­ны ВС. От­ре­зок DN пе­ре­се­ка­ет диа­го­наль АС в точке О (см. рис.). Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка ONBA, если пло­щадь пря­мо­уголь­ни­ка ABCD равна 492.


Ответ:

25
Задание № 235
i

Каж­дое бо­ко­вое ребро че­ты­рех­уголь­ной пи­ра­ми­ды об­ра­зу­ет с ее вы­со­той, рав­ной 3 ко­рень из 7 , угол 30°. Ос­но­ва­ни­ем пи­ра­ми­ды яв­ля­ет­ся пря­мо­уголь­ник с углом 30° между диа­го­на­ля­ми. Най­ди­те объем пи­ра­ми­ды V, в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  ко­рень из 7 умно­жить на V.


Ответ:

26

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0. левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 1 минус x, зна­ме­на­тель: x минус 10 конец дроби \geqslant0.


Ответ:

27

Най­ди­те уве­ли­чен­ную в 3 раза сумму квад­ра­тов кор­ней урав­не­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та плюс 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка =0.


Ответ:

28
Задание № 1787
i

Чис­ло­вая по­сле­до­ва­тель­ность (an) за­да­на фор­му­лой n-го члена a_n=2n в квад­ра­те минус 15n. Най­ди­те наи­мень­ший член am этой по­сле­до­ва­тель­но­сти и его номер m. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния m · am.


Ответ:

29
Задание № 1152
i

Двое ра­бо­чих вы­пол­ня­ют не­ко­то­рую ра­бо­ту. Сна­ча­ла пер­вый ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби часть вре­ме­ни, за ко­то­рое вто­рой вы­пол­ня­ет всю ра­бо­ту. Затем вто­рой ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби часть вре­ме­ни, за ко­то­рое пер­вый за­кон­чил бы остав­шу­ю­ся ра­бо­ту. Оба они вы­пол­ни­ли толь­ко  дробь: чис­ли­тель: 11, зна­ме­на­тель: 18 конец дроби всей ра­бо­ты. Сколь­ко часов по­тре­бу­ет­ся ра­бо­че­му с мень­шей про­из­во­ди­тель­но­стью для вы­пол­не­ния этой ра­бо­ты, если из­вест­но, что при сов­мест­ной ра­бо­те они сде­ла­ют ее за 3 ч 36 мин?


Ответ:

30

Объем пра­виль­ной тре­уголь­ной пи­ра­ми­ды SABC равен 13. Через сто­ро­ну ос­но­ва­ния ВС про­ве­де­но се­че­ние, де­ля­щее по­по­лам дву­гран­ный угол SBCA и пе­ре­се­ка­ю­щее бо­ко­вое ребро SA в точке М. Объем пи­ра­ми­ды МАВС равен 6. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 8, зна­ме­на­тель: ко­си­нус альфа конец дроби , где  альфа   — угол между плос­ко­стью ос­но­ва­ния и плос­ко­стью бо­ко­вой грани пи­ра­ми­ды SABC.


Ответ:

31
Задание № 1904
i

От­ре­зок BD яв­ля­ет­ся бис­сек­три­сой тре­уголь­ни­ка АВС, в ко­то­ром  дробь: чис­ли­тель: BC, зна­ме­на­тель: AB конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BC, зна­ме­на­тель: AC конец дроби = дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби . По от­рез­ку из точек В и D од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми на­ча­ли дви­же­ние два тела, ко­то­рые встре­ти­лись в точке пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС и про­дол­жи­ли дви­же­ние, не меняя на­прав­ле­ния и ско­ро­сти. Пер­вое тело до­стиг­ло точки D на 1 ми­ну­ту 14 се­кунд рань­ше, чем вто­рое до­стиг­ло точки В. За сколь­ко се­кунд вто­рое тело про­шло весь путь от точки D до точки В?


Ответ:

32
Задание № 1905
i

Рав­но­бед­рен­ная тра­пе­ция с ос­но­ва­ни­я­ми дли­ной 7 и 3 и ост­рым углом 60° вра­ща­ет­ся во­круг пря­мой, со­дер­жа­щей ее бо­ко­вую сто­ро­ну. Най­ди­те объем тела вра­ще­ния V и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.